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The present paper deals with the plane unsteady problem of the penetration of a blunt 
solid contour into an ideal compressible liquid. At the initial instant of time, the solid 
body touches the liquid free boundary at a single point. At the initial stage, the 
duration of which depends on the body geometry, the displacements of liquid particles 
are small and the disturbed fluid motion is described within the framework of the 
acoustic approximation. The main feature of the problem is the existence of a contact 
line between the free surface of the liquid and the solid-body surface. The position of 
this line is not known in advance and is to be determined together with the solution of 
the problem. A brief description of the method that provides a solution of complicated 
nonlinear problems such as this is given. The pressure distribution and the velocity field 
in the liquid are shown to be given in quadratures and in the case of a parabolic 
entering contour in an explicit form. For a parabolic entering contour the pressure at 
the top of the contour calculated using the model of an incompressible liquid is 
observed to deviate from a precise value by not more than 10 % of the latter after the 
first expansion waves have passed the contact point. The solution analysis enabled us 
to distinguish the regions in which the acoustic approximation fails and the liquid flow 
becomes essentially nonlinear. 

1. Introduction 
The plane unsteady problem of a smooth blunt solid body penetrating an ideal and 

weakly compressible liquid is considered. Initially the liquid is at rest and occupies a 
lower half-plane (y'  < 0), and the body touches its free boundary (y' = 0) at a single 
point (figure l a )  taken as the origin of the Cartesian coordinate system x'Oy' 
(dimensional variables are denoted by a prime). At some instant of time, taken as initial 
(t' = 01, body begins to penetrate the liquid vertically. The velocity of the body I/ is 
assumed to be much less than the sound velocity in the resting liquid co. External mass 
forces and surface tension are neglected. It is necessary to determine the liquid flow, its 
boundary geometry and the pressure distribution along the wetted part of the body for 
all times of motion. 

This problem belongs to a broad class of problems on the unsteady motion of a 
liquid occupying a domain that changes with time when the fluid boundary consists of 
the free surface with a touching solid surface and the contact lines between them (e.g. 
the problem of ship motion, the liquid flow along a dry channel, etc.). It should be 
noted that in such problems both the liquid flow and the contact line position are to 
be determined simultaneously at every instant. Thus it is hoped that a fundamental 
understanding of the main characteristics of the liquid flow initiated by the entry of a 
solid body into it will be helpful in analysing many related problems. On the other 
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FIGURE 1 .  Impact by a blunt body on a liquid free surface. (a) Initially, liquid is at rest and occupies 
a lower half-plane y < 0, and a body touches the free boundary at a single point. (6) The flow pattern 
at the subsonic stage: SW, shock wave; EW, expansion wave produced by the shock reflection in the 
free surface; I,, li, the right-hand and the left-hand expansion wave fronts respectively; D,, Di, D, are 
the regions under consideration in the present paper. 

hand, the entry problem has a distinguishing feature compared to the other problems 
of this class : namely, initially the whole of the liquid boundary is free and then at some 
instant of time, a previously absent component of the liquid boundary adjacent to the 
solid body appears, i.e. at the initial moment the flow topology changes. 

A precise statement of the entry problem is very complicated and an accurate 
solution or some properties of the solution are almost unavailable in practice. 
Therefore, various simplifications of the liquid properties and its flow structure are 
used. In most works devoted to the entry problem the liquid is assumed to be 
incompressible and ideal. For pointed bodies, such as a wedge or a cone, the pressure 
distribution along the wetted part of the entering body, calculated within the 
framework of the ideal incompressible liquid model, is in good agreement with the 
experimental data. For blunt bodies (a sphere, a parabolic shape and so on) this model 
gives an infinite value of the pressure at the instant of impact, however small the impact 
velocity may be. This is associated with the fact that the incompressible liquid model, 
in which the velocity of propagation of disturbances is infinite, is unable to describe the 
important stage of the entry process for a blunt body. The problem is that just after 
the moment of the first contact of the liquid with the solid blunt body, the area of the 
wetted part of the body surface expands at a rate that is larger than the local sound 
velocity (Bowden & Field 1964). In this case, the disturbance front is attached 
obliquely to the contact line and the disturbed part of the liquid is bounded by the 
solid-body surface on one side and by the shock wave on the other side. At this stage, 
referred to as supersonic, the free boundary of the liquid remains undisturbed and 
looks like a rigid undeformable plate. To obtain realistic results for this stage of the 
process, the liquid compressibility must be taken into account independently of value 
of the Mach number M =  V/c,. Later on, the shock front breaks away from the 
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contact line and escapes onto the free surface. For large times, compared with the 
duration of the supersonic stage, when the shock front has travelled quite far from the 
contact spot, the initial asymptotics of the solution of the entry problem for the 
incompressible liquid model well describes liquid motion near the body and makes it 
possible to start the numerical analysis of the nonlinear effects and real deformations 
of the liquid boundaries. 

The duration of the supersonic stage T' is the important characteristic of the entry 
process and it depends on both the body geometry and the Mach number of the 
problem. Its asymptotics at M-tO can be easy obtained using the condition that 
the velocities of the contact point at this moment and the sound co are equal (see 
Bowden & Field 1964). For example, for a parabolic contour one has T' = 
$(R/ V )  M2[1 + O(M?)] (see Korobkin & Pukhnachov 1985), where R is the parabola 
curvature radius at the apex. The significance of the quantity T' is that the liquid 
compressibility at t'/T' = O(1) cannot be neglected without losing the conformity of 
the model with actually observed phenomena. If T'/t' = o(l), then the liquid may be 
considered as incompressible throughout the flow region except for in a small vicinity 
of the shock front, the ratio of this vicinity width to the distance between the shock 
front and the body surface tending to zero at M+O. 

To discuss the initial stage of the blunt-body impact on the free surface of a liquid, 
where the liquid compressibility is the governing factor, let us change to dimensionless 
variables, which are designated by the above-mentioned terms without a prime. We 
take the half-width of the wetted part of the body at the end of the supersonic stage 
L as the lengthscale and the body velocity Vas the velocity scale of liquid particles. The 
quantity L/c,, being of order identical with T' at M+ 0, is conveniently taken as the 
timescale T,. In particular, for the parabolic contour T, = 2T' and L = RM. At the 
impact stage concerned here the liquid-particle displacements are infinitesimal and are 
O(LM),  which allows us, as a first approximation, to put boundary conditions on the 
undisturbed initial level of the liquid and to linearize them and the equations of motion 
near the initial rest state. 

The linearization leads to the well-known acoustic approximation where the liquid 
motion is irrotational and is described by the velocity potential $(x,y, t). The potential 
$(x, y, t )  satisfies the wave equation in the lower half-plane ( y  < 0), the mixed 
boundary conditions on the line y = 0 and is identically zero at t < 0. The characteristic 
feature of this problem is the fact that the division of the liquid boundary into a free 
surface and a contact spot is unknown and must be determined with the help of an 
additional condition. The presence of such a condition renders the problem nonlinear 
despite the fact that both the equations of motion and the boundary conditions are 
linearized. 

The problem stated in this way has been numerically solved by Gavrilenko (1984) 
and Gavrilenko & Kubenko (1985) using an iteration method. In this method the size 
of the contact spot is selected at every time step from the condition that moving liquid 
particles do not penetrate the 'forbidden' region bounded by the surface of the entering 
body. In effect this method is the numerical realization of the additional condition 
suggested by Wagner (1932). The Wagner approach makes it possible to solve 
analytically the linearized penetration problem within the framework of the 
incompressible liquid model. Nevertheless, as for the acoustic approximation, the 
Wagner condition leads to a complicated integral equation, the closed solution of 
which fails. 

That is why a new approach has been proposed (see Korobkin 1990), which is based 
on the regularization of the initial-value problem for the velocity potential 4. Namely, 



322 A .  Korobkin 

dealing with a new unknown function $(x,y, t )  is suggested such that the $t = q5 and 
$(x,y,O) = 0. The initial-value problem for the function y9 resembles that of the 
potential q5 except for the slip condition on the contact spot, the right-hand side of 
which now depends on the entering body shape. The introduction of this 
transformation is based on some ideas suggested by Pukhnachov (1979), and it was 
first used by Korobkin (1982) to prove the correctness of the mathematical formulation 
of the entry problem within the incompressible liquid model. Then the transformation 
was investigated by Ockendon (1990). According to its definition, the function $(x, y,  t )  
is a displacement potential and its derivatives +z, $, are the vector components of 
the liquid particle displacements in the horizontal and vertical directions, respectively. 
It would appear reasonable to demand that the liquid particle displacements would be 
finite at every finite instant of time. This simple condition proved to be sufficient for 
determining the law of motion of the contact points. In this case the function +(x,y, t )  
is continuously differentiable over the flow region and its second derivatives with 
respect to the space variables are square integrable. This approach has made possible 
the decomposition of the original nonlinear problem into two parts. First, the initial- 
value problem for the displacement potential $ is solved and the law of motion of 
contact points determined. Thereafter the problem for the potential q5 becomes linear, 
as the points where the boundary condition changes its type are now known, which 
allows us to give the solution in quadratures. At first glance it would seem that the 
problem for the potential e(x,y, t )  is no simpler than the original one. However, this 
is not true, mainly because of the improved smoothness of the unknown function. To 
solve the original problem completely, the displacement potential itself need not be 
determined but only its normal derivative on the boundary +,(x, 0, t), i.e. the vertical 
displacement of liquid particles located on the free surface at the initial instant of time. 
This function may be found in an explicit form for an arbitrary law of motion of 
contact points. The condition that the function +ly(x, 0, t )  is finite leads to a single 
nonlinear algebraic equation that is used to calculate the time dependence of the 
position of each contact point. 

It is important that the free surface of the liquid remains undisturbed during the 
supersonic stage (0 < t < T )  and, hence, the contact points coincide with the points of 
intersection of the half-plane boundary ( y  = 0) with the entering contour. At this stage 
there is an analogy between the impact problem and the well-known problem of a plane 
lifting surface placed in a supersonic stream at a small angle of attack. This analogy 
was first indicated by Skalak & Feit (1966) and used by Rochester (1979) while 
analysing the related plane problem of a drop impact on a solid surface. However, at 
this stage the impact problem may be analysed directly without using this analogy. This 
has been performed by Korobkin (19923) and the solution has been written in 
quadratures which makes possible the treatment in detail of the influence of the body 
geometry on the fluid motion characteristics. In particular, a shallow depression at the 
body apex is shown to lead to the focusing of the shock wave formed under the high- 
speed impact. This result correlates with the experimental data by Dear & Field (1988). 
As a non-trivial consequence of the theoretical analysis it was concluded that the 
maximum strength of the shock wave is possible only when the depression is a 
hyperbola in shape. 

After escaping the shock wave on the free boundary (the subsonic stage) expansion 
waves are formed and spread along the contact spot and into the liquid bulk. Then they 
escape to the free surface again and are reflected from it as compression waves. Such 
reflections proceed repeatedly, the wave amplitudes reducing with time. When 
analysing the liquid flow at this stage, the analogy of the impact problem and that of 
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the supersonic flow about a thin wing is very helpful and makes possible an efficient 
problem solution. This analogy was used by Korobkin (1985) in studying the subsonic 
stage. In particular, after the shock wave escapes ( t  > T) ,  the pressure at the escape 
point was shown to decrease and to be of O(l/{t- T};) at t+ T+O. However, the 
contact-point positions were presumed to be known, and so the results were 
conditional and therefore unpublished. 

It should be noted that the proposed method of solving the blunt-body impact 
problem differs from the well-known approaches for analysing the impact by a body 
with flattening or sharpening. The main feature of this method is the availability of the 
supersonic stage for blunt bodies, which leads to a variety of peculiar phenomena. 

The present research should be considered as an extension of the previous study by 
the author (see Korobkin 1992b); all notations are retained. Particular attention is 
given to the peculiarities of the liquid flow and the pressure distribution, immediately 
after the escape of the shock wave on the free surface. As mentioned earlier, at every 
instant a region D(t)  (see figure 1 b)  may be indicated in the flow where the liquid 
motion is independent of the presence of the free boundary and coincides with the 
corresponding flow in the problem of a contour emerging from an infinite plate. The 
geometry of region D(t) and the liquid flow inside it has been analysed by Korobkin 
(19923). After the escape of the shock wave onto the free boundary, regions Dl(t)  and 
Di(t) are formed, where the liquid flow essentially depends on the presence of the free 
surface. The lower boundaries of these regions in the acoustics approximation are half- 
circles and they are thereafter referred to as fronts of the right-hand and left-hand 
expansion waves because after they have passed the liquid pressure drops. The 
calculation of the pressure field behind the wave fronts as well as in the region of their 
interaction, D,(t), is of evident interest, since there exist possible cases where these 
waves cause the appearance of negative pressure zones which may account for 
cavitation and, as a result, for the cavitation erosion of a body. In addition, such 
calculations performed for a sufficiently long time may provide estimates of the 
duration of the initial stage after which the liquid compressibility can be neglected for 
describing the flow near the entering body. 

The entry of a shape that is symmetric about the Oy-axis is considered for simplicity 
only: all the results except as otherwise noted are also valid in the general case. 

2. Formulation of the problem 
Within the framework of the acoustic approximation the flow domain coincides with 

the half-plane y < 0 which is occupied by the liquid at the initial moment. The liquid 
flow is described by the velocity potential $(x,y, t ) ,  for which the initial boundary- 
value problem has the form 

With the choice of characteristic scales of the variations of the independent variables 
and the unknown functions given in 9 1, the sound velocity in the liquid at rest and the 
impact velocity are equal to unity in the non-dimensional variables. The part of the 
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boundary - a ( [ )  < x < a(t), y = 0 corresponds to the contact region of the entering 
contour with the liquid, and the parts x < - a ( f )  and x > a(t) correspond to the free 
surface where the pressure is zero at  all times. The points with coordinates x = + a(t), 
y = 0 correspond to the contact points of the free liquid boundary with the surface of 
the rigid body. The function a(t)  describes the law of motion of the points and it is 
assumed to be determined in advance. In the general case, the position of the body 
contour in non-dimensional variables is given by the equation y = M ( f ( x )  - t) ,  where 
the functionf(x) describes the contour shape, so that at the supersonic stageflu(t)] = 
t .  For a parabolic contour, when f(x) = ;x2, we have a(t) = (22); when 0 < t < $ 
(supersonic stage) and a(r) = (3[5+8t];-5]/4 (see Korobkin 1992a) when f < t < 9 
(the beginning of the subsonic stage). The time corresponds to the moment when the 
left-hand expansion wave overtakes the right-hand contact point. Calculations of the 
function a(t)  for large times and also for an arbitrary contour shape may only be done 
numerically. The calculation length is doubled if the entering body is unsymmetrical : 
in this case the laws of motion of the right-hand and left-hand contact points have to 
be determined separately. From the definition of the dimensionless variables one has 
a(T)  = 1 in the symmetrical case, but for the possible use of the present results for the 
problem of an unsymmetrical entering body also, we will denote a(T)  by a,, as was 
done earlier. When the solution of problem ( I )  has been found, the pressure in the 
liquid p(x, y ,  t )  is determined by the linearized Cauchy-Lagrange integral p = - # t ,  and 
the velocity field u(x, y ,  t )  = (u, v) is given by u = (q5z, 4,). 

As the function a(t)  is known, the impact problem (1) is equivalent to the problem 
of a plane lifting surface placed in a supersonic stream at a small angle of attack, when 
the stream velocity is the double the sound velocity and the attack angle is half the 
Mach number M .  This last problem was investigated in detail by Krasilshchikova 
(1954). The theory developed by Krasilshchikova makes it possible to reduce the 
calculations, but, where possible, the analytical calculations will be done directly (see 
Korobkin 1992b), which leads more rapidly to the final formulae that permit a detailed 
analysis. 

The method of solution is based on the well-known formula 

which makes it possible to evaluate the potential 4 in the lower half-plane when the 
vertical component of the velocity vector v(x, 0, t )  = &(x, 0, t )  over its boundary and 
for all time is given. The integration domain n(x, y ,  t )  lies in the upper half-plane 7 > 
0 and is bounded above by the hyperbola (see figure 2) 

r,: = t - [ ( X - [ ) 2 + y 2 ] i  = : ~ ( < , x , y , t ) .  

When using the formula (2) it is necessary to divide the domain n(x,y, t )  into parts, 
inside each of which the function u([ ,O,  7) is determined by an indivisible analytical 
expression. For instance, the curve r,: f = k a(7) indicates the width of the contact spot 
at the moment r (see figure 2). Inside the domain bounded by this curve we have 
v([, 0, r )  = - 1. In the domain external with respect to the curve 

= { f ( [ ) ,  If1 < a*, 
I51 + T-a,, 151 ’ a* 

the free surface is undisturbed for all time of motion and, hence, v(C, 0 , ~ )  = 0. Inside 

r, : 
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FIGURE 2. Geometry of the integration domain. 

the right-hand C region and the left-hand C' region bounded by the curves r, and r,, 
the function v([, 0,7) is unknown. The technique of its determination is based on the 
theory of thin wings in a supersonic flow (see Krasilshchikova 1982). 

When y = 0 and (x, t )  E C the left-hand side of (2) is equal to zero in accordance with 
the boundary condition on the free surface and we get an integral equation with respect 
to v([, 0 , ~ ) .  In the characteristic coordinate system which is produced from the system 
(07 by its rotation anticlockwise through 45" the integral equation can be split into two 
Abel's equations, solutions of which are given by the explicit formulae. Let some point 
S lie in the region C and its coordinates be x, t. Then at the moment t the vertical 
velocity of a liquid particle lying at a distance x from the origin of the coordinate 
system is determined by the curvilinear integral of the first kind 

Here !SKI, IKEJ, lSEl are the lengths of the segments SK, KE, BE respectively (see 
figure 3 ) .  The integration is carried out over the part A K  of the line passing through 
the point S inclined at 45" to the axis O[ (it is a line with the characteristic slope). The 
same formula is valid also in the case when the point S lies in the region C': the 
corresponding picture explaining the notation is produced by mirror reflection of figure 
3 with respect to the axis 07. One needs to consider ( 3 )  as a recurrent formula, 
consistently determining the function v((, 0,7) in regions C and C'. As the first step, 
consider the case when the point S lie sufficiently close to the curve r, and the segment 
A N  is absent. In this case v(E) = - 1 over the integration interval and we get the 
explicit formula 

V ( S )  = ;(%-arctan<), 5 = {(AK(/ IsK~J~,  (4) 
2 

which is valid in the strips C,, Ci adjacent to r,. The width of the strips is equal to 4 2  
for symmetrical body shapes. The strip C, is considered at the next step. This strip is 
adjacent to C, and it has a width such that under the integration in (3) one has 0 < 
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5 
FIGURE 3 .  Integration path for the calculation of the vertical velocity component 

of the free surface. 

(AN1 < 4 2 .  Then the strip Ck is considered and so on. For an unsymmetrical shape (4) 
is also valid but the sizes of the strips in regions C and C' are determined in a more 
complicated way. 

Following this scheme we can determine the function u(x, 0, t )  and then use (2) to 
evaluate the velocity field inside the liquid. Equation ( 3 )  is very helpful and makes it 
possible to reduce the calculations to explicit formulae in some simple cases. 

The coordinate of the left-hand intersection point of curves r, and r, is denoted by 
a, and that of the right-hand point by a, (see figure 2). For values of x,y, t such that 
- a ,  < a, < a, < a, we must take u(c,O, 7) E - 1 in (2) .  This case corresponds to liquid 
flow in the region D(t) and was considered in detail by Korobkin (1992b). In the 
present paper situations will be considered when the chain of inequalities given above 
fails. In $ 3  the pressure distribution inside region D,(t) behind the front of the right 
expansion wave is analysed (see figure 1 b). Region D;(t) is considered in a similar way. 
In $4 the interaction of the expansion waves is analysed and the pressure inside region 
D,(t) is evaluated. Thus the solution of the original problem (1) for t > 0 is presented 
behind the shock front in a domain which is a combination of regions D(t), Dl(t), D;(t), 
D,(t) (see figure 4). This domain is bounded above by the fronts of the compression 
waves, which are formed at the moments when the corresponding expansion waves 
overtake the contact points opposite them and escape onto the free surface of the 
liquid. 

It is worth noting that we need not only to construct the solution of (l), but also to 
verify its correspondence to the main assumptions which guarantees the validity of the 
acoustic theory. Leaving aside detailed discussion of the question, we can point out 
that if the pressure p(x, y ,  t) ,  the velocities u(x, y, t ) ,  u(x, y, t )  of the liquid particles and 
also their first derivatives with respect to the spatial variables are finite then the 
solution of the problem (1) gives formally the asymptotics of the solution of the 
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u 
D, 

FIGURE 4. The flow pattern at the subsonic stage: 11, I; are the right-hand and the left-hand expansion 
wave fronts respectively; l,, 6 are the right-hand and the left-hand compression wave fronts 
respectively; D ,  D‘, D are the regions considered. 

original nonlinear problem of blunt-body impact on a compressible liquid surface as 
M+O. The narrow zones where this condition fails must be distinguished and the 
liquid motion inside those zones has to be analysed separately. The results of this 
analysis will be published in the near future. 

3. The pressure distribution inside region D,(t) 
Region Dl(t)  appears at the moment of escape of the shock wave onto the free 

surface ( t  = T).  It is bounded below by the front of the right-hand expansion wave 
which is the circle segment I ,  with its centre at the point (a,, 0) and radius t -  T ( t  > T) ,  
and above by the liquid boundary ( y  = 0) and, when t > a ,  + T, by the front of the left- 
hand expansion wave which is the circle segment I; with its centre at the point (-a,, 0) 
and radius t -T.  Let some point U with coordinates x,y belong to Dl(t) at the 
moment t, then the following inequalities occur: Ja,(x,y, t)l < a,, a,(x,y, t )  2 a,; 
moreover if U E 1, then a,(x, y ,  t )  = a,, if U E  I; then a,(x, y ,  t )  = -a,. 

In the case under consideration the integration in (2) is carried out over the domain 
that can be represented as the sum of three domains: N’PNL, NAL, NKA (see figure 
5).  The line N L  passes through point N with coordinates a,, r2 where 72 is such that 
a(72) = a,, and has the characteristic slope. It can be directly verified that the integrals 
over NAL, NKA differ only in sign (see Krasilshchikova 1982). To demonstrate this we 
need to rewrite the integral over the domain NKA in the characteristic coordinate 
system and take into account (3). Therefore the integrals over the domains NAL, NKA 
mutually vanish and only the integration over N’PNL remains, where v([, 0,7) E - 1. 
In consequence, for the velocity potential 4(x ,y ,  t )  in Dl(t)  we find 

Here H(Q = f ( Q  when a, < 6 < [,(x,y, t )  and H(Q = [ -a ,  +72 when [, < [ < a,, the 
coordinates of the point L are (&,f(&)), and the function [,(x,y, t )  satisfies the 
equation f ( & )  = [,-u,+r,. It should be noted that in ( 5 )  the differentiation with 
respect to x, y or t and the integration with respect to 5 are interchangeable, because 
F(aj) = H(aJ for j  = 1,2. Evaluating the internal integral in ( 5 )  and differentiating both 
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FIGURE 5. The geometry of the integration domain for determining the pressure field inside Dl(t). 

sides with respect to t, we get the final formula for the pressure distribution inside 
Dl(t)  : 

Here the functionf(x) describes the form of the entering body, u c ( f )  = da(t)/dt is the 
velocity of the right-hand contact point, and a,(x, y ,  t), a,(x, y ,  t )  and &(x, y ,  t )  are the 
coordinates of the intersection points of curve rc with the curve r, and the line NL (see 
figure 5). In (6) let us denote the first term by p l ( x , y ,  t )  (it is always positive) and the 
second one by p,(x, y ,  t).  

The expressions obtained show that the pressure changes continuously when 
crossing the front of the expansion wave I,. Indeed, on approaching the back side of 
the front we have a2 + a,  + 0, cL + a,  - 0, and then p,(x,  y ,  t) tends to the value of the 
pressure in front of the expansion wave (see Korobkin 1992b), and p2(x,y, t)+O. 
Approaching the free surface where y+-O, x > a(t), one finds that &,+a,, 
t - r 2  + a, -x+ 0 and, hence, p + 0. 

Let us denote the time at which the left-hand expansion wave overtakes the right- 
hand contact point by q. The quantity is a solution of the equation q - a( T,) = T+ a, ; 
for a parabolic shape it is y .  Formula (6) allows us to obtain the pressure distribution 
over the contact spot, where y = 0, la, - t + 7l < x < a(t) ,  T < t < T,, in this region: 

It can be seen that when x + a(t) - 0 the pressure has an integrable singularity. The last 
expression agrees with that obtained by Korobkin (1985). 

Let us consider the pressure distribution behind the front of the expansion wave in 
detail. It should be noted that if the form of the entering body is described by a smooth 
function thenp(x,y, t )  will be a smooth and bounded function inside D,(t) and, hence, 
it or its derivatives may have peculiarities only on the boundary of the region or at the 
moment of the region appearance. Four zones are distinguished; inside each of them 
the structures of the pressure distribution are complicated and have to be analysed 
separately. These zones are (i) the vicinities of the contact points at the subsonic stage 
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(T  < t < TJ; (ii) the vicinities of the contact points just after the escape of the shock 
wave onto the free surface ( t+ T+O); (iii) the vicinity of the front of the expansion 
wave I , ;  (iv) the vicinity of the point where the front 1, is attached to the free surface. 
Inside each of those zones it is necessary to construct the asymptotics of the pressure 
and verify their correspondence to the assumptions that lie at the heart of the acoustic 
approximation. 

This analysis corresponds to the method of matched asymptotic expansions which 
allows us to reduce a complicated problem to consideration of its simplest elements, 
some effects such as nonlinearity, compressibility and so on being taken into account 
only within the zones where they are of major importance. On the other hand, the 
present analysis indicates that it is necessary to develop some special experimental 
methods to provide information on the fine flow structure inside these zones. 

3.1. The pressure distribution close to the contact point 
It is convenient to use the 'internal' variables xl.yl determined by the equations 

x = a(t)  + xl, y = y,, x1 = p cos 8,, y1 = p sin 8,, (7) 

where --7c < 8 < 0, p < 1. Substitution of (7) in (6) gives, as p+O, 

1 -v,"(t) -f 

p(x ,y ,  t )  = $ { ~ ) i j c o s 2 H 1 + , -  V,(t) 1 
The formula can be simplified with a suitable stretching of the 'internal' variables. 
Namely, let us define the new variables x , , y ,  in the following way: 

x1 = [I -v~(t)lix,,  y1 = y ,  x2 = rcos 8, y 2  = rsin 8. (9) 
In the new coordinate system the asymptotics of the pressure close to the contact point 
is 

It is worth noting that the function y,(t) depends not only on local characteristics of 
the liquid flow, but also on all the previous history of the entry process. Formulae (lo), 
(1 1) are valid when T < t < T,, but it is obvious that for t > T,  the asymptotic pressure 
close to the contact point has the same structure; however, the coefficient y,(t) can be 
calculated only numerically. 

The function u,(t) is the ratio of the dimensional velocity of the contact point to the 
sound velocity co and, hence, it is the 'internal' Mach number (see Lesser 1981). 
Therefore the deformation of the horizontal coordinate in (9) corresponds to the 
Prandtl transformation (Prandtl 1930) which is used in the linear theory of a thin wing 
in a steady subsonic flow. This transformation sets the correspondence between 
characteristics of subsonic flow around a thin wing and characteristics of an ideal, 
incompressible flow around the body. In our case (10) shows that in the deformed 
coordinate system (9) with its centre at the right-hand contact point the pressure has 
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FIGURE 6. Graph of the coefficient y,(t) of the pressure singularity for a parabolic contour. The 
function y,(t) reaches its maximal value at t = y. The dashed line corresponds to the coefficient in the 
model for an incompressible liquid. 

an integrable singularity of the same kind as that within the framework of the 
incompressible liquid model (see Korobkin & Pukhnachov 1985). However, the 
coefficient y,(t) of the singularity cannot be determined by the liquid flow at the 
moment t as it occurs for the model of an incompressible liquid. 

Thus, close to the contact points at the subsonic stage of the impact the acoustic 
approximation fails and we need to use some other assumptions on the flow structure 
inside this narrow zone. The function y,(t) is very important because it determines the 
thickness of the spray jet. For a parabolic contour when + < t < 9 we get 

Figure 6 presents a plot of the function y,(t); the dashed line corresponds to the 
coefficient in the model an incompressible liquid. For a parabolic contour it is (t)-:. As 
can be seen, y,(t) rapidly increases, then it changes rather slowly, reaches its maximal 
value and starts to decrease. It can be assumed that the function y,(t) also continues to 
decrease when t > 9 and approaches asymptotically the function (r)-i. It follows from 
(12) that y,(t) reaches its maximal value, which is x-'(2$, at the moment when the 
velocity of the contact point is exactly equal to half of sound velocity, v, = i. This 
happens when t = 3.875. 

According to (12) y,(t) + 0 when t + T+ 0 and the singularity in (10) disappears. But 
then v,.(t) + 1 -0 and the transformation (9) degenerates. In this case we need to use the 
general formula (8). Its analysis shows that the pressure asymptotics is not uniformly 
valid relative to O1 when t - t  T+O. That is why the liquid motion close to the contact 
points just after the escape of the shock wave onto the free surface has to be analysed 
separately. 
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FIGURE 7. The flow pattern near the right-hand contact point just after the shock 
escapes onto the free surface. 

3.2. The pressure distribution near the contact point at the beginning 
of the subsonic stage 

In order to find the pressure distribution inside this zone we will use the same moving 
coordinate system as for the supersonic stage (see Korobkin 1992b). Namely, let us 
introduce 'internal' variables A, p, 7 such that x = a(t) + A ,  y = p, t = T+ 7. The 
function a(t) describes the motion of the right-hand point of intersection of the 
entering contour with the initially undisturbed liquid surface ( y  = 0). For all time 
the equalityfla(t)] = t is valid, and a( t )  = a(t) when 0 < t < T, and a(t) < a(t) when 
t > T. 

On the plane of the spatial variables A, p the flow region p < 0 consists of two parts. 
The first part D"(t) is bounded below by the shock wave, and above by the front of the 
expansion wave Z;(t) (see figure 7) .  Inside this region the fluid motion does not depend 
on the presence of the free surface. Inside the second part, which lies above the curve 
l;(t), the presence of the free surface is important. The asymptotic pressure inside P ( t )  
when 7 +- - 0 has been derived earlier (see Korobkin 1992 b) and has the form 

It is natural to expect that the structure of the leading term of the asymptotic pressure 
will be the same when 7' + 0. Indeed, a simple generalization of the reasoning (see 
Korobkin 19926) allows us to write the following approximate formula for the 
pressure distribution inside Dc(t) : 

p(x,  y ,  t )  = (- 7 ) 4  U(h/72, p/(  - 7);) + . . . . 

Here a!( T )  = a"( T -  0), and k, < k, < 0 < k, are the real roots of the cubic equation 

The position of the lower boundary of Dc((t) is determined by the condition of the 
merging the roots k ,  and k,. In this case a,(x, y ,  t )  = a,  + 7( 1 + k,) + 0(7'), but inside 
Dc(t) we have a, < a,, therefore k, < - 1. On substituting k = - 1 in (13), we find the 
position of the front of the expansion wave for small positive 7: 

la?(T)I k ' ( 2 + k ) + 2 k ( h / 7 ' ) - ~ ' / ~ ~  = o(7). (13) 

Z:(t): ~ / 7 '  = -+o./$)~ ++la?(T)I + o(7). (14) 
Now we shall analyse the pressure distribution above parabola (14). Inside this 

region a2(x,y ,  t )  > a,, T < 7'(x,y, t )  < t .  The function 7,(x,  y ,  t )  is to satisfy the 
equation 

(t-7,)' = ( ~ - a ( 7 , ) ) ~ + y ~ ,  
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the solution of which we will seek in the form 72 = T+7n, n = O(1) as 7-0. On 
substitution of this representation in (15), neglecting terms of O(77 and higher, we 
obtain 

(16) 
It can be shown that behind the front (14) this cubic equation has three real roots: 
n, < 0 < n, < 1 < n3. But a,-a, = 7n+0(7') > 0 and t--7, = ~ ( 1  -n) > 0 ,  hence one 
needs to choose the root n,(h/7', ,u/79. 

The asymptotic expansion of a,(x, y ,  t )  when t - T+ + 0 has the same form as inside 
Dc((t), namely a, = ~ ( t )  +7kl + O(77, where k, (h /72 , ,u /7~)  is the smallest root of (13). 
The function 7L(x ,  y ,  t )  satisfies the equation T~ = ~ 4 7 ~ )  - a, + 72 which yields 

(1 -n) [a!(T)-a: (T)n2+2(h/~2)]+ ,u2/73  = O(7). 

7 L  = T-7k0nZ + 0(72), 

when 7 = 0. For a smooth shape we have k ,  = f .  Substitution of these asymptotic 
expansions into (6) yields the final relation 

k,  = [a:(T)/ar(T)]; 

When ,u = 0 equation (16) has the roots 

n(1) = 1, n(2) = [k,2-2(h/72)/la~(~)llf, n(3) = - n .  (2) 

If h < A,(7) = T'I~T(T)I (k;'- 1)/2, then one needs to put n, = 1. When A = A, the 
roots n(l) and n") merge and for h > A, we must put n, = n@). In this case n(') < 1. The 
function A,(7) gives the position of the contact point in the moving coordinate system, 
more exactly a(t) -a ( t )  = h,(7) + O(73). Equation (13) gives k ,  = - 1 -k,n('), k ,  = 0, 
k,  = - 2 - k, when p = 0. On the surface of the entering body (LL + - 0, h < A,) one 
has n, = 1 ,  and (16) yields p2/[73( 1 - n,)] = 2(A, - A)/?. Then 

When h --f A, - 0 the first term tends to zero and the second one to infinity. On the free 
surface (p = 0, h > A,) the following equations hold: n2 < 1, k ,  = - 1 -k,n,, hence 
both terms in (17) are equal to zero. 

Hence, in the vicinity under consideration, like when 7 < 0, the pressure field is 
described with the help of the self-similar variables A/?, p/$. But now the free surface 
appears in the flow scheme (see figure 7), and inside the regions which lie above and 
below the parabola I: the pressure is given by two different expressions. In the special 
case when a:( T )  = 0 the present analysis fails and it is necessary to carry out additional 
investigations. 

3.3. The pressure j e ld  near the expansion wave front 
We shall determine the asymptotic expansion of the pressure p ( x , y , t )  near the 
front of the expansion wave I,. Inside the vicinity under consideration x = a,+ 
(t-T-d)cosO, y = (t-T-d)sinO, where 0 < A  -g 1, --n d 6' < 0 when T <  t < 
T+a, and -arccos(a,/(t- T ) )  < 6' d 0 when t > T+a, (see figure 1 b). The main 
difficulties arising in the analysis of (6) for d + 0 are connected with the construction 
of the asymptotic expansion of the integral summandp,(x, y ,  t). The reason is that both 
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the integration limits and the integrand depend on the small parameter A ;  moreover 
the integrand is an unbounded function and the positions of its singularities change 
with A .  

The pressure variation Ap on the front of the expansion wave can be shown to be 

j (18) 
Ap = - A ~ ( a , ) f , ( k , )  ( t  - T)-i (1 - cos 0)-3 + O ( A ) ,  

4 2  
f,(k,) = (1 + k,): (3ki + k,  - 2). 

For a parabolic body formf”(a,) = 1, k,  = $ (see Korobkin 1992a), but f , ( f)  = 0, and, 
hence, the pressure variation provided by the presence of the free surface has order not 
lower than O(& This result is also valid for an arbitrary smooth contour with the only 
restriction being f”(a,) + 0. 

Thus, when the Mach number A4 is small, the acoustic approximation describes the 
geometry of the front of the expansion wave and the liquid flow behind it correctly 
except for a narrow zone near the point where this front joins the free surface. To 
construct the leading-order asymptotics of the function Ap when A -t + 0 it is necessary 
to consider the high-order terms, which lead to an increase in the number of 
calculations. On the other hand, the exact form of the leading term is less important 
than the exact order of Af  for small A .  It was shown in this Section that the order of 
Ap is not lower than O ( h )  but it can be higher. An improvement of this result will be 
given in the following Section by an indirect method, without construction of the 
asymptotic expansion of Ap(x,y ,  t )  in the explicit form. In any case we can say that the 
pressure behind the expansion waves under consideration drops more slowly than in 
the general case. 

3.4. The asymptotic pressure near the point where the front of the expansion wave is 
attached to the free surface 

As has been mentioned earlier (see Korobkin 1992b), the high order of the touching 
of the shock front and the expansion wave front close to the point of their attachment 
to the free surface can lead to unbounded values of the pressure gradient in this 
vicinity. Using (6) it can be shown that this is in fact so. For this purpose it is 
convenient to use the coordinate system A ,  0 introduced in 93.3,  associated with the 
front of the expansion wave. The small vicinity considered now is determined by the 
relations 0 < A 4 1,O < - 0 4 1, where the respective orders of the values A and 0 are 
unknown in advance and must be determined together with the construction of the 
asymptotic pressure p(x , y ,  t )  when A -t + 1, 0-t-0. Instead of 0 it is convenient to 
introduce the new variable E = 1 -cos 0. 

Construct first the asymptotic expansion of the function 72(x ,  y ,  t )  when c + 0, 
A + 0. Equation (15) gives 

(19) 
( t  - 4 2  = ( t  - T-A)2- 2(a2 - a*) ( t  - T-  A )  (1 ~ E )  + (a ,  -a*)2,\ 

J u2 = a(T+ [7, - TI). 

It is clear that 72 - T-t 0, a2 - a,  -t 0 when A + 0, and 

4 7 , )  = a,  + 72 - T+ fa:( T )  (7, - T)’ + . . . . 
Taking the last expansion into account we get from (19) a single equation for 72, 

la:(T)I (7, - T)’ + 2 c ( ~ ~  - T )  - 24 = O( I), 

where the right-hand side contains terms of order higher than that of at least one of 
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the terms on the left-hand side of the equation. A non-trivial asymptotic expression for 
the function 72(x, y ,  t )  will occur only when all three terms on the left-hand side of the 
equation have the same order. Thus, we need to put A = pe2/(21a:(T)I), where p is the 
new self-similar variable and p = O( 1) at e-+ 0. 

The final formula for the pressure is 

where L(p, k,) = 1 when - k: < p < 0, and 

when p > 0;  psw(a*, t )  is the pressure on the back side of the shock front at the point 
of its attachment to the free surface. Thus, the pressure is constant and is equal to 
psw(a*, t )  between the shock wave and the front of the expansion wave (- k,2 < p < 0). 
The pressure distribution is described by the function L(p, k,) which does not change 
with time between the front of the expansion wave and the free surface (p > 0). The 
pressure magnitude is proportional to psw(a*, t )  and vanishes with time as t-i. Along 
the curves p = const., i.e. 

the pressure is constant. The function L(p, k,) tends to zero and to unity approaching 
the free surface (p -+ co) and the front of the expansion wave (p --f + 0), respectively. The 
structure of the pressure distribution in this vicinity is close to that in the Prandtl-Meyer 
flow. A graph of the function L(p,k,) at k,  = g, corresponding to the smooth-body 
case, is shown in figure 8. 

The vicinity considered is a narrow zone attached to the front of the expansion wave. 
In fact, if the size of the zone along the front is small and equal to e,, then the zone 
width is of U(e:), which follows from (21). Correspondingly, in this zone the normal 
to the front of the expansion wave derivative of the pressure is equal to 

A = 0.5p(l -COS 8)2/l~l;l, (21) 
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and is of O( 1 / A )  as d --f + 0. Hence, the assumption that the pressure gradient is finite 
over the flow region, which lies at the heart of the acoustic approximation, breaks 
down in the above-mentioned zone. Inside this zone the acoustic approximation fails 
and we must construct an ‘internal’ asymptotic expansion of the solution which is able 
to describe the fine structure of the flow near the points where the shock wave attaches 
to the free surface. 

On going away from the free surface along the front of the expansion wave the 
asymptotics (20) has to be matched with that of (18) in the region where they are 
simultaneously valid. But for finite values of 0 and small d we have p < 1 and p = O(A) 
when d+O. Therefore, when d+O the real order of the pressure variation Ap in 
crossing the front of the expansion wave has to coincide with the order of the function 
L@, k,) - 1 at p --f 0. Analysis of the last function for small positive p is not difficult and 
yields 

1 1 
+---[35ki+ 20ki 5ki-24k:-28k0-34](p/2)1+ Obi) 

For a smooth contour (k ,  = $) we get 

Therefore, near the front of the expansion wave the pressure p ( x , y ,  t )  is a twice 
continuously differentiable function and its third derivative normal to the front is of 
o ( A - ~ )  as A --f 0. 

4. The pressure field inside the region D,(t) 
The region of the expansion wave interaction, D2(t), appears at the moment at which 

the left-hand (I,) and right-hand ( I ; )  fronts first touch. The region is adjacent to the 
region Dl(t) and is bounded above by the surface of the entering body when a ,  + T < 
t < & (see figure 1 b )  and by the fronts of the compression waves l2 and & when t > 

(figure 4). If the entering shape is unsymmetrical, then the geometry of this region 
is more complicated. Let the point U with coordinates x,y lie inside D,(t). Then the 
following chain of inequalities is valid : 

-a* < a, < -a,  < a ,  < a, < a*, 

where a* = a(&). Moreover a,  = -a* when UE 6 and a, = a* when U E I,. 
Inside the region the velocity potential $(x,y, t )  is determined by (2), where the 

integration domain is shown in figure 9. This figure differs from figure 2 by the presence 
of lines N L  and N‘L’ which have the characteristic slope and pass through the points 
N and N’,  respectively. With the help of these lines the integration domain cr(x, y ,  t )  is 
decomposed into six parts: NBN‘P, N A L B ,  N’BLA’, NKA, N’K‘A’, LBL‘. In $ 3  it 
was pointed out that the integrals in (2)  over the domains NAL’B U LBL’ and NKA, 
N‘BLA’ u LBL‘ and N’K’A’, differ from each other only in their sign. Therefore the 
integration in (2) occurs in fact over two domains NBN‘P and L B L  and the integral 
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FIGURE 9. Geometry of the integration domain for determining the pressure field inside D,(t). 

over LBL' has to be taken with a minus sign (see Krasilshchikiva 1982). It is important 
that in the final formula the integration is carried out over the domains where 
&([, 0,7) = - 1. This case allows us to study the pressure field inside D2(t) in detail. 

Let us denote the coordinates of the points L and L' by (tL,7J and (&,7;), 

respectively. Then 7; =f(cL) ,  7 L  =f(tL) and -a ,  < tL < < a,. The pressure 
distribution inside D,(t) can be found in the same manner as in the previous section: 

This formula is also valid in the case when the segments N L  and N'L' do not intersect. 
Then the domain LBL' is absent but the integration domain NLL'N'P may be added 
up to the rectangular NLBL'N'P by continuing the lines N L  and N'L' up to their 
intersection at the point B. Putting formally $J[, 0,7) = - 1 in LBL', adding and 
subtracting in (2) the corresponding integral over the additional domain LBL', we will 
arrive at the same equation (22), but now < tL and the integral term in (22) will be 
negative. 

For an unsymmetrical contour the laws of motion of the left-hand and the right- 
hand contact points are different; however, (22) remains valid, but noting that in the 
first term, ~ ~ ( 7 , )  is the velocity of the left-hand contact point at the moment 71 and in 
the second term, ~ ~ ( 7 , )  is the velocity of the right-hand contact point at the moment 72. 

It should be noted that for an arbitrary contour, at every time moment we can 
indicate inside the flow region a curve below which the pressure is positive. The curve 
is given by the equation ti(x, y, t )  = tL(x, y, t) .  Above this curve cL < tL, therefore, the 
integral in (22) is positive and it is possible that the pressure will be negative. The 
possibility of this event depends on the magnitude of the velocity of the contact points 
at the subsonic stage. More exactly, this velocity must be less than some critical value. 
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To clarify this statement, let us consider the entry of a rectangular cylinder, with a 
curved base of radius of curvature R. Then the supersonic stage can be found and 
analysed as earlier, but at the subsonic stage one has zj,(t) = 0 when t > T,, > T, where 
TR depends on the radius of curvature of the base and qf. < q. In this case the first two 
terms in (22) are zero and, hence, the pressure is negative. 

The analysis of both the pressure distribution (22) and the entering body forms f(x) 
leading to the formation of rarefaction zones is impossible without numerical 
calculations. It should be noted that the numerical integration in (2) should present no 
problems, since the integrand is a bounded and smooth function in the integration 
interval. 

In conclusion we would like to give the expression for the pressure at the top of the 
entering symmetrical body. Equation (22) when x = y = 0 and t > T+a, gives 

When t + T +  a,  + 0 we have r2  +- T +  0, a, +- a,  to, tL + a ,  - 0,  so the first term in (23) 
tends to zero and the second one to the pressure at the top of the entering contour just 
before the expansion waves reach this point (see Korobkin 1992b). 

5. The pressure distribution over the wetted part of the entering parabolic 
contour 

For a parabolic contour the formulae obtained above can be simplified and written 
with the help of special functions. Indeed, in this case one has f(5) = 5’/2 and, 
therefore, the expression ( t  -f(f;>)2 - (x - Qz - y 2  in (6)  and (22) is a polynomial of the 
fourth degree with respect to 5. The polynomial has four real roots a. < al < a2 < a3 
(see Korobkin 1992b) which are the coordinates of the intersection points of the curves 
r0:7 =f(o and r, (roots *I.,, a,), and the curves To and r,, which is the mirror image 
of r, relative to the line 7 = t (roots ao, a3). Hence, the integral terms in (6) and (22) 
can be expressed with the help of elliptic integrals of the first kind. For (6) the following 
chain of the inequalities is valid: a. < -a ,  < a1 < 5 < 5, < a, < a2 < a3, therefore 

Correspondingly, for (22) independently of the relative position of the points L and L‘ 
we obtain 

Taking (24) and (25) into account one can divide the procedure for evaluating the 
pressure field inside the regions D, D,, D;, D, into two steps. As the first step the 
coordinates of the intersection points of the curves To and r,, and ro and r,, and also 
the curves re and r, are determinated. This can be done graphically or by solving the 
algebraic equations. Then the pressure is evaluated using the formulae (6), (22), (24), 
(25). In view of the contour symmetry it is enough to consider only the region x > 0. 

For the contact spot ( y  = 0,IxJ < a(t))  the above algebraic equations can be solved 
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FIGURE 10. Geometry of the domains on the plane (x, t )  for which the pressure distribution over the 
wetted part of the entering contour is analytically given in the present paper. 

analytically. The equation for ai ( j  = 0, 1,2 ,3)  when y = 0 splits into two quadratic 
equations. When 1x1 < a(?) this allows us to write the following relations: 

a 0 = - 1 - [ 2 ( t + x ) + l ] t ,  a1 = 1-[2( t -x)+1]6,  
a2 = - 1 + [ 2 ( t + x ) + I ] t ,  a3 = 1+[2(?-x)+I] t .  

When a(t) < x < a(?) the equations for a2 and a3 change places. Denote the expression 
[(t +:)2 - x2]t by h(x, t )  and the expression 2[(a3  - a,) (a2 - a,)]-; by W(x, t )  then we 
have 

W(x, t )  = (2h)-$, q(x,  0, t )  = 

when 0 < x < a(?), 

[; t-Jt 
W(x,t) = (t-;+h)-i, q(x,O,t)  = -+- 

when a(r) < x < a(?). For other expressions we get 
E+ - = [6+2(tIfrx)]t ,  tL = 4 - E + ,  cL = E - - 4 ,  r1 = :[I +E!-3E-] ,  

r2 = :[l +E:-3E+],  a, = ;[7-3E-],  a2 = ;[3E+-7],  

It can be seen that r l (x ,  0, t )  = r2( -x, 0, y ) ,  &(x, 0, t )  = -EL,( -x, 0, t). The formulae 
for &) and rp(g) cannot be simplified, therefore the final formulae for the pressure 
distribution over the wetted part of the entering contour (see figure 10) are the 
following : 

~~(7,) = 3/(2E- - 3), ~ ~ ( 7 ~ )  = 3/(2E+ - 3). 

(26) 
2 

P(X, 0, t )  = - W(x, 0 F[g?(5,), 41 + S(x, 0, 
7c 

I E + - 3  
S(x,  t )  = - 

3 ( E + - 3 ) + 2 ( 1 - ~ )  ’ 
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FIGURE 11. Pressure on the contact spot for different times. 

when < t < +, 1x1 < t -E and 9 < t < y, 1x1 < y- t (domain 3). It is necessary to add 
to (26)  and (27) the formula given by Rochester (1979), which in our notation has the 
form 

(28)  
2 

Ax, 0 , t )  = - W X ,  t> F[$, ql 
7C 

and gives the pressure distribution in domain 1, i.e. when 0 < t < f, 1x1 < a(t) and f < 
t < 2, 1x1 < 2-t. The pressure distribution over the contact spot for different times is 
shown in figure 1 1 .  It can be seen that the pressure profiles are smooth, which is 
connected with smoothness of the pressure near the expansion wave fronts (see 53.3). 
It may be expected that the compression waves which are initiated by the reflection of 
the expansion waves in the free surface do not reduce the smoothness of the pressure 
distribution inside the contact spot. 

In order to evaluate the pressure at the top of the parabola (x = y = 0) it is 
convenient to use (23),  which gives that the pressure before the expansion waves reach 
the centre of the contact spot (0 < t < i) is 

where P = [2t + 115. When t > i the pressure depends on the presence of the free surface 
of the liquid and before the compression waves I,, I', reach the top it is equal to 

6(5):[ a - 3  ] + ____ a(14+p) F [  arcsin rz) e] 
p-1 ' p + l  ' 

p(O,O, t )  = __ - 
7Ca 301-7 

where a = [6 + 2$. It should be noted that equation (29) defines the pressure evolution 
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at the top of the contour for all time if the free surface is absent, which is equivalent 
to replacing the boundary condition in (1) on the parts y = 0, 1x1 > a(t) by the slip 
condition q5u = 0. 

The pressure at the contour top without taking the compressibility of liquid into 
account was given by Wagner (1932). His formula in our dimensionless variables has 
the simple form 

where c(t) is half the contact spot width. For the parabolic contour we have c(t)  = 2tb, 
then 

pw(0, 0, t )  = t-6. (31) 
The functions (29), (30), (31) are shown in figure 12. The solid line corresponds to 

the exact solution (30), the dotted line to the solution without considering the presence 
of the free surface (29), the dashed line to the Wagner solution (3 1). It is worth noting 
that the Wagner solution deviates from the precise one at t = by not more than 10 % 
of the latter. 

7. Conclusion 
In the present paper it is shown that within the framework of the acoustic 

approximation the pressure distribution both inside the liquid and at the contact spot 
at the beginning of the subsonic stage of the vertical entry of a solid-body is given in 
quadratures and for a parabolic contour it is given in explicit form. Analysis of the 
solution allows us to distinguish zones where the acoustic approximation fails and the 
liquid flow becomes essentially nonlinear. These are the vicinities of the contact points, 
and the narrow zones close to the points where the expansion wave is attached to the 
free surface. The asymptotics of the pressure obtained makes it possible to estimate the 
relative sizes of the zones and point out the rules of introduction of the ‘internal’ 
variables and the new unknown functions which can help us to describe the fine 
structure both of the liquid flow and the pressure field inside these zones. It is possible 
that the exact forms of the asymptotic formulae are not very interesting but they will 
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be helpful for matching the ‘internal’ and ‘external’ solutions. Outside those zones the 
pressure field is correctly described by the acoustic theory and the formulae obtained 
can be used in practice. 

Characteristics of the pressure field for large time are of undoubted importance. 
Such calculations can only be carried out numerically. The number of calculations 
rapidly increases in time, which leads to reduction of the solution correctness. 
However, we can hope that the solution of the original problem (1) will be sufficiently 
close to the solution of the Wagner problem, which does not consider compressibility 
of liquid, for moderate times. It is worth noting that the calculations can be done with 
a pocket calculator, as the most expensive part of the work has been carried out 
analytically in the present paper. 

The axisymmetrical problem of the vertical entry of a body of rotation into an ideal 
slightly compressible liquid can be treated in the same way as the present paper. 
However, if for the plane problem the geometry of the liquid flow region is given in 
quadratures, in the axisymmetrical case it is necessary to solve an integral equation. 
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